时间:2023年2月23日(星期四)15:30-16:30
地点:西湖大学云谷校区E4-201
主持人:理论科学研究院,魏传豪博士
主讲人:浙江大学,吴磊博士
报告摘要:
Using MacPherson's Euler obstruction function, one can identify the abelian group of constructible functions with the group of algebraic cycles on a smooth complex algebraic variety. Kashiwara's local index formula gives an alternative approach to this identification by using characteristic cycles for holonomic D-modules (they are Lagrangian cycles in the cotangent bundle). This identification then enables us to define Chern classes of algebraic cycles by using characteristic cycles. In this talk, I will first explain how to obtain Chern classes of the pushforward of Lagrangian cycles under an open embedding with normal crossing complement by using logarithmic cotangent bundles motivated by D-module theory. Then I will discuss applylications of such Chern classes in understanding Chern-Mather classes of very affine varieties and in proving the Involution Conjecture of Huh and Sturmfels in likelihood geometry. This work is joint with Maxim, Rodriguez, and Wang.