The $2$-systole on compact Kähler surfaces with positive scalar curvature

2025-12-19 16:58:04

时间:2025年12月26日(星期五),9:00-10:30

Tencent Meeting:898 3182 7279

Password: 541944


主持人:Jintian Zhu, ITS

主讲人:Zehao Sha, USTC

报告主题:The $2$-systole on compact Kähler surfaces with positive scalar curvature

报告摘要:In this talk, I will introduce a systolic inequalities on compact Kähler surfaces with positive scalar curvature (PSC). For a compact PSC Kähler surface $(X,\omega)$, I will explain how to prove the sharp inequality $\min_X S(\omega) sys_2(\omega) \leq 12\pi$ with equality if $X\simeq P^2$ endowed with $\omega$ the Fubini-Study metric. Using the classification of PSC Kähler surfaces by their minimal  models, we then determine the optimal constant in each case and describe the corresponding rigid models. If time permits, I will introduce an independent analytic argument on non-rational PSC Kähler surfaces, adapting Stern’s level set method to the Kähler setting.