HomeEventsSeminarsGeometric Analysis 》 Content

The $2$-systole on compact Kähler surfaces with positive scalar curvature

2025-12-19 16:58:04
报告人 时间 9:00-10:30
地点 Tencent Meeting 2025
月日 12-26

Time:9:00-10:30, Friday, December 26 2025

Tencent Meeting:898 3182 7279

Password: 541944


Host:Jintian Zhu, ITS

Speaker:Zehao Sha, USTC

Title:The $2$-systole on compact Kähler surfaces with positive scalar curvature

Abstract:In this talk, I will introduce a systolic inequalities on compact Kähler surfaces with positive scalar curvature (PSC). For a compact PSC Kähler surface $(X,\omega)$, I will explain how to prove the sharp inequality $\min_X S(\omega) sys_2(\omega) \leq 12\pi$ with equality if $X\simeq P^2$ endowed with $\omega$ the Fubini-Study metric. Using the classification of PSC Kähler surfaces by their minimal  models, we then determine the optimal constant in each case and describe the corresponding rigid models. If time permits, I will introduce an independent analytic argument on non-rational PSC Kähler surfaces, adapting Stern’s level set method to the Kähler setting.